Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Rev Iberoam Micol ; 40(2-3): 31-34, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37770333

RESUMO

BACKGROUND: Fungal endocarditis is a low-frequency disease with a challenging diagnosis, as it can be mistaken with bacterial endocarditis. Fungal endocarditis causes higher mortality rates in immunocompromised patients. In the clinical practice, the endocarditis caused by fungi represents up to 10% of all infectious endocarditis cases and has a mortality rate of nearly 50%. CASE REPORT: Here we present the case of a 53-year-old woman under corticosteroid therapy with a history of rheumatic heart disease, aortic valve replacement, and rheumatoid arthritis, who presented with fungal endocarditis caused by Candida albicans. Even though the patient received 3 years of antifungal prophylaxis with fluconazole, had valve replacement surgery, and received intensive care, the patient finally worsened and died. CONCLUSIONS: Comorbidities and corticosteroid therapy predisposed the patient to acquire fungal endocarditis. This case highlights the importance of implementing procedures for the isolation and identification of fungi, and for carrying out antifungal-susceptibility testing, as well as establishing surveillance programs to identify infection-causing species and drug resistance patterns in hospitals. Moreover, designing and upgrading the algorithm for infectious endocarditis is the key to future improvements in diagnosis.


Assuntos
Candidíase , Endocardite , Micoses , Feminino , Humanos , Pessoa de Meia-Idade , Candida albicans , Antifúngicos/uso terapêutico , Candidíase/microbiologia , Fluconazol/uso terapêutico , Endocardite/diagnóstico , Endocardite/tratamento farmacológico , Endocardite/etiologia , Micoses/tratamento farmacológico , Corticosteroides
2.
Rev. iberoam. micol ; 40(2/3): 31-34, Abr-Jun, 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-228372

RESUMO

Case report: Here we present the case of a 53-year-old woman under corticosteroid therapy with a history of rheumatic heart disease, aortic valve replacement, and rheumatoid arthritis, who presented with fungal endocarditis caused by Candida albicans. Even though the patient received 3 years of antifungal prophylaxis with fluconazole, had valve replacement surgery, and received intensive care, the patient finally worsened and died. Conclusions: Comorbidities and corticosteroid therapy predisposed the patient to acquire fungal endocarditis. This case highlights the importance of implementing procedures for the isolation and identification of fungi, and for carrying out antifungal-susceptibility testing, as well as establishing surveillance programs to identify infection-causing species and drug resistance patterns in hospitals. Moreover, designing and upgrading the algorithm for infectious endocarditis is the key to future improvements in diagnosis.(AU)


Antecedentes: La endocarditis fúngica es una enfermedad de baja incidencia cuyo diagnóstico puede ser complicado al confundirse con la endocarditis bacteriana. La endocarditis fúngica se asocia a mayor mortalidad en pacientes inmunocomprometidos. En la práctica clínica, la endocarditis fúngica representa hasta el 10% de las endocarditis infecciosas, con una mortalidad de aproximadamente el 50%. Caso clínico: Mujer de 53 años con endocarditis fúngica por Candida albicans en tratamiento con corticosteroides por antecedentes de fiebre reumática, prótesis de válvula aorta y artritis reumatoide. A pesar de 3 años de profilaxis antifúngica con fluconazol, un nuevo reemplazo valvular y cuidados intensivos, la paciente finalmente empeora y muere. Conclusiones: Las comorbilidades y la toma de corticosteroides predispusieron a la paciente a adquirir una endocarditis fúngica. Esto resalta la importancia de implementar procedimientos de aislamiento, identificación del hongo y pruebas de sensibilidad a los antifúngicos, así como establecer programas de vigilancia para identificar especies causantes de infecciones y patrones de resistencia en hospitales. Además, diseñar y actualizar el algoritmo para un mejor diagnóstico de las endocarditis infecciosas es una cuestión clave.


Assuntos
Humanos , Feminino , Pessoa de Meia-Idade , Endocardite/diagnóstico , Endocardite Bacteriana , Micoses/tratamento farmacológico , Fluconazol/uso terapêutico , Candida albicans/virologia , Testes de Sensibilidade Microbiana , Exame Físico , Pacientes Internados , Micologia , Endocardite/tratamento farmacológico , Endocardite/etiologia , Endocardite/microbiologia
3.
ACS Omega ; 7(19): 16380-16390, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601331

RESUMO

A series of bis-N-substituted tetrandrine derivatives carrying different aromatic substituents attached to both nitrogen atoms of the natural alkaloid were studied with double-stranded model DNAs (dsDNAs) to examine the binding properties and mechanism. Variable-temperature molecular recognition studies using UV-vis and fluorescence techniques revealed the thermodynamic parameters, ΔH, ΔS, and ΔG, showing that the tetrandrine derivatives exhibit high affinity toward dsDNA (K ≈ 105-107 M-1), particularly the bis(methyl)anthraquinone (BAqT) and bis(ethyl)indole compounds (BInT). Viscometry experiments, ethidium displacement assays, and molecular modeling studies enabled elucidation of the possible binding mode, indicating that the compounds exhibit a synergic interaction mode involving intercalation of one of the N-aryl substituents and interaction of the molecular skeleton in the major groove of the dsDNA. Cytotoxicity tests of the derivatives with tumor and nontumor cell lines demonstrated low cytotoxicity of these compounds, with the exception of the bis(methyl)pyrene (BPyrT) derivative, which is significantly more cytotoxic than the remaining derivatives, with IC50 values against the LS-180, A-549, and ARPE-19 cell lines that are similar to natural tetrandrine. Finally, complementary electrochemical characterization studies unveiled good electrochemical stability of the compounds.

4.
Toxins (Basel) ; 13(9)2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34564668

RESUMO

Glutathione S-transferases are a family of detoxifying enzymes that catalyze the conjugation of reduced glutathione (GSH) with different xenobiotic compounds using either Ser, Tyr, or Cys as a primary catalytic residue. We identified a novel GST in the genome of the shrimp pathogen V. parahaemolyticus FIM- S1708+, a bacterial strain associated with Acute Hepatopancreatic Necrosis Disease (AHPND)/Early Mortality Syndrome (EMS) in cultured shrimp. This new GST class was named Gtt2. It has an atypical catalytic mechanism in which a water molecule instead of Ser, Tyr, or Cys activates the sulfhydryl group of GSH. The biochemical properties of Gtt2 from Vibrio parahaemolyticus (VpGSTT2) were characterized using kinetic and crystallographic methods. Recombinant VpGSTT2 was enzymatically active using GSH and CDNB as substrates, with a specific activity of 5.7 units/mg. Low affinity for substrates was demonstrated using both Michaelis-Menten kinetics and isothermal titration calorimetry. The crystal structure showed a canonical two-domain structure comprising a glutathione binding G-domain and a hydrophobic ligand H domain. A water molecule was hydrogen-bonded to residues Thr9 and Ser 11, as reported for the yeast Gtt2, suggesting a primary role in the reaction. Molecular docking showed that GSH could bind at the G-site in the vicinity of Ser11. G-site mutationsT9A and S11A were analyzed. S11A retained 30% activity, while T9A/S11A showed no detectable activity. VpGSTT2 was the first bacterial Gtt2 characterized, in which residues Ser11 and Thr9 coordinated a water molecule as part of a catalytic mechanism that was characteristic of yeast GTT2. The GTT2 family has been shown to provide protection against metal toxicity; in some cases, excess heavy metals appear in shrimp ponds presenting AHPND/EMS. Further studies may address whether GTT2 in V. parahaemolyticus pathogenic strains may provide a competitive advantage as a novel detoxification mechanism.


Assuntos
Glutationa Transferase/genética , Penaeidae/microbiologia , Vibrio parahaemolyticus/genética , Animais , Genoma , Filogenia , Análise de Sequência
5.
J Mycol Med ; 31(3): 101159, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34157512

RESUMO

Coccidioidomycosis is a systemic disease caused by the fungi Coccidioides immitis and C. posadasii. It is a prevalent disease in arid regions with high temperatures and low precipitations in America. Coccidioidomycosis is a highly endemic disease of US-Mexico border states but commonly underdiagnosed. The diagnosis of coccidiomycosis is not easy due to the lack of specific symptoms; it is usually an integral approach, including clinical laboratory tests as an essential part of the diagnosis. Nevertheless, despite various laboratory tests available, affordability can be a limitation, mainly in developing countries. This review's objectives are 1) to learn the different laboratory approaches that arose and their application for clinical diagnosis; 2) to discuss their advantages and weaknesses, and finally, 3) propose what is on the horizon for future advances in clinical laboratory diagnosis of coccidioidomycosis. It has been a long way in laboratory tests evolution to detect coccidioidomycosis from tissue microscopy to Real-Time PCR. However, there is a delay in technology adoption for Coccidioides spp. detection in the clinical laboratory. The molecular Point of Care Testing (POCT) technology has reached us in our trench while research in PCR variants stills on-going. None of the currently existing scientific literature in coccidioidomycosis research has mentioned it. However, this trend in infectious and non-infectious disease diagnosis will continue in that way in order to offer better options for an easy and fast diagnosis. Undoubtedly, the implementation of molecular POCT for Coccidioides spp. would save resources in health care attention and improve access to diagnostic tools.


Assuntos
Coccidioidomicose , Coccidioides/genética , Coccidioidomicose/diagnóstico , Coccidioidomicose/epidemiologia , Doenças Endêmicas , Humanos , Laboratórios Clínicos , Reação em Cadeia da Polimerase
6.
Molecules ; 26(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922853

RESUMO

Ferulated polysaccharides such as pectin and arabinoxylan form covalent gels which are attractive for drug delivery or cell immobilization. Saccharomyces boulardii is a probiotic yeast known for providing humans with health benefits; however, its application is limited by viability loss under environmental stress. In this study, ferulated pectin from sugar beet solid waste (SBWP) and ferulated arabinoxylan from maize bioethanol waste (AX) were used to form a covalent mixed gel, which was in turn used to entrap S. boulardii (2.08 × 108 cells/mL) in microbeads using electrospray. SBWP presented a low degree of esterification (30%), which allowed gelation through Ca2+, making it possible to reduce microbead aggregation and coalescence by curing the particles in a 2% CaCl2 cross-linking solution. SBWP/AX and SBWP/AX+ S. boulardii microbeads presented a diameter of 214 and 344 µm, respectively, and a covalent cross-linking content (dimers di-FA and trimer tri-FA of ferulic acid) of 1.15 mg/g polysaccharide. The 8-5', 8-O-4'and 5-5'di-FA isomers proportions were 79%, 18%, and 3%, respectively. Confocal laser scanning microscopy images of propidium iodide-stained yeasts confirmed cell viability before and after microbeads preparation by electrospray. SBWP/AX capability to entrap S. boulardii would represent an alternative for probiotic immobilization in tailored biomaterials and an opportunity for sustainable waste upcycling to value-added products.


Assuntos
Pectinas/química , Saccharomyces boulardii/isolamento & purificação , Xilanos/química , Portadores de Fármacos/química , Lacase/metabolismo
7.
BMC Plant Biol ; 21(1): 108, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33618672

RESUMO

BACKGROUND: Mango, Mangifera indica L., an important tropical fruit crop, is grown for its sweet and aromatic fruits. Past improvement of this species has predominantly relied on chance seedlings derived from over 1000 cultivars in the Indian sub-continent with a large variation for fruit size, yield, biotic and abiotic stress resistance, and fruit quality among other traits. Historically, mango has been an orphan crop with very limited molecular information. Only recently have molecular and genomics-based analyses enabled the creation of linkage maps, transcriptomes, and diversity analysis of large collections. Additionally, the combined analysis of genomic and phenotypic information is poised to improve mango breeding efficiency. RESULTS: This study sequenced, de novo assembled, analyzed, and annotated the genome of the monoembryonic mango cultivar 'Tommy Atkins'. The draft genome sequence was generated using NRGene de-novo Magic on high molecular weight DNA of 'Tommy Atkins', supplemented by 10X Genomics long read sequencing to improve the initial assembly. A hybrid population between 'Tommy Atkins' x 'Kensington Pride' was used to generate phased haplotype chromosomes and a highly resolved phased SNP map. The final 'Tommy Atkins' genome assembly was a consensus sequence that included 20 pseudomolecules representing the 20 chromosomes of mango and included ~ 86% of the ~ 439 Mb haploid mango genome. Skim sequencing identified ~ 3.3 M SNPs using the 'Tommy Atkins' x 'Kensington Pride' mapping population. Repeat masking identified 26,616 genes with a median length of 3348 bp. A whole genome duplication analysis revealed an ancestral 65 MYA polyploidization event shared with Anacardium occidentale. Two regions, one on LG4 and one on LG7 containing 28 candidate genes, were associated with the commercially important fruit size characteristic in the mapping population. CONCLUSIONS: The availability of the complete 'Tommy Atkins' mango genome will aid global initiatives to study mango genetics.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/genética , Frutas/crescimento & desenvolvimento , Frutas/genética , Mangifera/crescimento & desenvolvimento , Mangifera/genética , Paladar/genética , Variação Genética , Genoma de Planta , Genótipo , Melhoramento Vegetal/métodos
9.
Int J Biol Macromol ; 164: 2701-2710, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827617

RESUMO

Trypsins (E.C. 3.4.21.4) are digestive enzymes that catalyze the hydrolysis of peptide bonds containing arginine and lysine residues. Some trypsins from fish species are active at temperatures just above freezing, and for that are called cold-adapted enzymes, having many biotechnological applications. In this work, we characterized a recombinant trypsin-III from Monterey sardine (Sardinops caeruleus) and studied the role of a single residue on its cold-adapted features. The A236N mutant from sardine trypsin-III showed higher activation energy for the enzyme-catalyzed reaction, it was more active at higher temperatures, and exhibited a higher thermal stability than the wild-type enzyme, suggesting a key role of this residue. The thermodynamic activation parameters revealed an increase in the activation enthalpy for the A236N mutant, suggesting the existence of more intramolecular contacts during the activation step. Molecular models for both enzymes suggest that a hydrogen-bond involving N236 may contact the C-terminal α-helix to the vicinity of the active site, thus affecting the biochemical and thermodynamic properties of the enzyme.


Assuntos
Peixes/metabolismo , Mutação , Tripsina/química , Tripsina/genética , Animais , Temperatura Baixa , Ativação Enzimática , Estabilidade Enzimática , Proteínas de Peixes/química , Proteínas de Peixes/genética , Peixes/genética , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Secundária de Proteína
10.
Dev Comp Immunol ; 113: 103807, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32735961

RESUMO

Lysozymes play a key role in innate immune response to bacterial pathogens, catalyzing the hydrolysis of the peptidoglycan layer of bacterial cell walls. In this study, the genes encoding the c-type (TmLyzc) and g-type (TmLyzg) lysozymes from Totoaba macdonaldi were cloned and characterized. The cDNA sequences of TmLyzg and TmLyzc were 582 and 432 bp, encoding polypeptides of 193 and 143 amino acids, respectively. Amino acid sequences of these lysozymes shared high identity (60-90%) with their counterparts of other teleosts and showed conserved functional-structural signatures of the lysozyme superfamily. Phylogenetic analysis indicated a close relationship with their vertebrate homologues but distinct evolutionary paths for each lysozyme. Expression analysis by qRT-PCR revealed that TmLyzc was expressed in stomach and pyloric caeca, while TmLyzg was highly expressed in stomach and heart. These results suggest that both lysozymes play important roles in defense of totoaba against bacterial infections or as digestive enzyme.


Assuntos
Antibacterianos/metabolismo , Proteínas de Peixes/genética , Peixes/imunologia , Mucosa Gástrica/metabolismo , Muramidase/genética , Miocárdio/metabolismo , Animais , Galinhas/genética , Clonagem Molecular , Digestão , Evolução Molecular , Proteínas de Peixes/metabolismo , Gansos/genética , Perfilação da Expressão Gênica , Imunidade Inata , Muramidase/metabolismo , Especificidade de Órgãos , Filogenia , Alinhamento de Sequência
11.
PeerJ ; 8: e8956, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32341898

RESUMO

Synthetic molecules that mimic the function of natural enzymes or molecules have untapped potential for use in the next generation of drugs. Cyclic compounds that contain aromatic rings are macrocyclic cyclophanes, and when they coordinate iron ions are of particular interest due to their antioxidant and biomimetic properties. However, little is known about the molecular responses at the cellular level. This study aims to evaluate the changes in immune gene expression in human cells exposed to the cyclophanes Fe2PO and Fe2PC. Confluent human embryonic kidney cells were exposed to either the cyclophane Fe2PO or Fe2PC before extraction of RNA. The expression of a panel of innate and adaptive immune genes was analyzed by quantitative real-time PCR. Evidence was found for an inflammatory response elicited by the cyclophane exposures. After 8 h of exposure, the cells increased the relative expression of inflammatory mediators such as interleukin 1; IRAK, which transduces signals between interleukin 1 receptors and the NFκB pathway; and the LPS pattern recognition receptor CD14. After 24 h of exposure, regulatory genes begin to counter the inflammation, as some genes involved in oxidative stress, apoptosis and non-inflammatory immune responses come into play. Both Fe2PO and Fe2PC induced similar immunogenetic changes in transcription profiles, but equal molar doses of Fe2PC resulted in more robust responses. These data suggest that further work in whole animal models may provide more insights into the extent of systemic physiological changes induced by these cyclophanes.

12.
Fungal Genet Biol ; 136: 103292, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31730908

RESUMO

Ras-GTPases are nucleotide hydrolases involved in key cellular processes. In fungi, Ras-GTPases regulate conidiation, development, virulence, and interactions with other fungi or plants. Trichoderma spp. are filamentous saprophytic fungi, widely distributed along all latitudes, characterized by their rapid growth and metabolic diversity. Many species of this genus interact with other fungi, animals or plants. Furthermore, these fungi are used as biocontrol agents due to their ability to antagonize phytopathogenic fungi and oomycetes, through competence, antibiosis, and parasitism. However, the genetic and molecular regulation of these processes is scarcely described in these fungi. In this work, we investigated the role of the gene tbrg-1 product (GenBank accession number XP_013956100; JGI ID: Tv_70852) of T. virens during its interaction with other fungi and plants. Sequence analyses predicted that TBRG-1 bears the characteristic domains of Ras-GTPases; however, its size (1011 aa) is 3- to 4-times bigger compared with classical GTPases. Interestingly, phylogenetic analyses grouped the TBRG-1 protein with hypothetical proteins of similar sizes, sharing conserved regions; whereas other known Ras-GTPases were perfectly grouped with their respective families. These facts led us to classify TBRG-1 into a new family of Ras-GTPases, the Big Ras-GTPases (BRG). Therefore, the gene was named tbrg-1 (TrichodermaBigRas-GTPase-1). Quantification of conidia and scanning electron microscopy showed that the mutants-lacking tbrg-1 produced less conidia, as well as a delayed conidiophore development compared to the wild-type (wt). Moreover, a deregulation of conidiation-related genes (con-10, con-13, and stuA) was observed in tbrg-1-lacking strains, which indicates that TBRG-1 is necessary for proper conidiophore and conidia development. Furthermore, the lack of tbrg-1 affected positively the antagonistic capability of T. virens against the phytopathogens Rhizoctonia solani, Sclerotium rolfsii, and Fusarium oxysporum, which was consistent with the expression patterns of mycoparasitism-related genes, sp1 and cht1, that code for a protease and for a chitinase, respectively. Furthermore, the antibiosis effect of mycelium-free culture filtrates of Δtbrg-1 against R. solani was considerably enhanced. The expression of secondary metabolism-related genes, particularly gliP, showed an upregulation in Δtbrg-1, which paralleled an increase in gliotoxin production as compared to the wt. These results indicate that TBRG-1 plays a negative role in secondary metabolism and antagonism. Unexpectedly, the biocontrol activity of Δtbrg-1 was ineffective to protect the tomato seeds and seedlings against R. solani. On the contrary, Δtbrg-1 behaved like a plant pathogen, indicating that TBRG-1 is probably implicated in the recognition process for establishing a beneficial relationship with plants.


Assuntos
Hypocrea/enzimologia , Hypocrea/genética , Proteínas ras/genética , Proteínas ras/metabolismo , Antibiose/genética , Basidiomycota/crescimento & desenvolvimento , Agentes de Controle Biológico , DNA Fúngico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Hypocrea/crescimento & desenvolvimento , Interações Microbianas/genética , Mutação , Filogenia , Doenças das Plantas/microbiologia , Rhizoctonia/crescimento & desenvolvimento , Metabolismo Secundário/genética , Esporos Fúngicos/genética
13.
Front Plant Sci ; 10: 969, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417586

RESUMO

Mango (Mangifera indica L.) is an important commercial fruit that shows a noticeable loss of firmness during ripening. Polygalacturonase (PG, E.C. 3.2.1.15) is a crucial enzyme for cell wall loosening during fruit ripening since it solubilizes pectin and its activity correlates with fruit softening. Mango PGs were mapped to a genome draft using seventeen PGs found in mango transcriptomes and 48 bonafide PGs were identified. The phylogenetic analysis suggests that they are related to Citrus sinensis, which may indicate a recent evolutive divergence and related functions with orthologs in the tree. Gene expression analysis for nine PGs showed differential expression for them during post-harvest fruit ripening, MiPG21-1, MiPG14, MiPG69-1, MiPG17, MiPG49, MiPG23-3, MiPG22-7, and MiPG16 were highly up-regulated. PG enzymatic activity also increased during maturation and these results correlate with the loss of firmness observed in mango during post-harvest ripening, between the ethylene production burst and the climacteric peak. The analysis of PGs promoter regions identified regulatory sequences associated to ripening such as MADS-box, ethylene regulation like ethylene insensitive 3 (EIN3) factors, APETALA2-like and ethylene response element factors. During mango fruit ripening the action of at least these nine PGs contribute to softening, and their expression is regulated at the transcriptional level. The prediction of the tridimensional structure of some PGs showed a conserved parallel beta-helical fold related to polysaccharide hydrolysis and a modular architecture, where exons correspond to structural elements. Further biotechnological approaches could target specific softening-related PGs to extend mango post-harvest shelf life.

14.
Molecules ; 23(11)2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380712

RESUMO

The objective of this study was to evaluate the effect of combining catechin, protocatechuic, and vanillic acids against planktonic growing, adhesion, and biofilm eradication of uropathogenic Escherichia coli (UPEC), as well as antioxidant agents. The minimum inhibitory concentrations (MIC) of protocatechuic, vanillic acids and catechin against the growth of planktonic bacteria were 12.98, 11.80, and 13.78 mM, respectively. Mixing 1.62 mM protocatechuic acid + 0.74 mM vanillic acid + 0.05 mM catechin resulted in a synergistic effect acting as an MIC. Similarly, the minimum concentrations of phenolic compounds to prevent UPEC adhesion and biofilm formation (MBIC) were 11.03 and 7.13 mM of protocatechuic and vanillic acids, respectively, whereas no MBIC of catechin was found. However, combinations of 1.62 mM protocatechuic acid + 0.74 mM vanillic acid + 0.05 mM catechin showed a synergistic effect acting as MBIC. On the other hand, the minimum concentrations to eradicate biofilms (MBEC) were 25.95 and 23.78 mM, respectively. The combination of 3.20 mM protocatechuic acid, 2.97 mM vanillic acid, and 1.72 mM catechin eradicated pre-formed biofilms. The antioxidant capacity of the combination of phenolics was higher than the expected theoretical values, indicating synergism by the DPPH•, ABTS, and FRAP assays. Effective concentrations of catechin, protocatechuic, and vanillic acids were reduced from 8 to 1378 times when combined. In contrast, the antibiotic nitrofurantoin was not effective in eradicating biofilms from silicone surfaces. In conclusion, the mixture of phenolic compounds was more effective in preventing cell adhesion and eradicating pre-formed biofilms of uropathogenic E. coli than single compounds and nitrofurantoin, and showed antioxidant synergy.


Assuntos
Antibacterianos/farmacologia , Catequina/farmacologia , Hidroxibenzoatos/farmacologia , Ácido Vanílico/farmacologia , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacologia , Biofilmes/efeitos dos fármacos , Catequina/química , Humanos , Hidroxibenzoatos/química , Testes de Sensibilidade Microbiana , Plâncton/efeitos dos fármacos , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/patogenicidade , Ácido Vanílico/química
15.
3 Biotech ; 8(1): 5, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29259880

RESUMO

Lysine-rich (Lys-rich) proteins encoded by AGP17, AGP18, and AGP19 genes are cell wall-associated glycopeptides related to sexual reproduction in flowering plants. This subclass belongs to classical arabinogalactan proteins (AGPs) widely studied in model plants like Arabidopsis. In this study, we identified the CaAGP18 cDNA from bell pepper (Capsicum annuum L.), as well as its expression pattern during vegetative and reproductive development. The deduced amino acid sequence revealed a Lys-rich AGP18 protein of 238 amino acids residues in length with an estimated molecular mass of 22.85 kDa and an isoelectric point of 9.7. The protein is predicted as canonical AGP due to the presence of a small Lys-rich region and a C-terminal sequence essential for posttranslational modification with a glycosylphosphatidylinositol (GPI). Phylogenetic analysis showed that CaAGP18 is clustered together with NtAGP18, SpAGP18, StAGP18 and NaAGP18 from Solanaceae species. CaAGP18 expression through plant phenological stages had the highest transcription level in leaves at the seedling stage, whereas in reproductive organs there was a significant up-regulation in pistils during anthesis, also in petals 2 days post-anthesis (DPA), and in fruit at the expansion stage. Our results open future research for possible roles of CaAGP18 in cell expansion as a wall-associated plasticizer and reproductive processes like pistil interactions and petal cell death.

16.
Biochimie ; 135: 35-45, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28104507

RESUMO

We studied a mango glutathione S-transferase (GST) (Mangifera indica) bound to glutathione (GSH) and S-hexyl glutathione (GSX). This GST Tau class (MiGSTU) had a molecular mass of 25.5 kDa. MiGSTU Michaelis-Menten kinetic constants were determined for their substrates obtaining a Km, Vmax and kcat for CDNB of 0.792 mM, 80.58 mM min-1 and 68.49 s-1 respectively and 0.693 mM, 105.32 mM min-1 and 89.57 s-1, for reduced GSH respectively. MiGSTU had a micromolar affinity towards GSH (5.2 µM) or GSX (7.8 µM). The crystal structure of the MiGSTU in apo or bound to GSH or GSX generated a model that explains the thermodynamic signatures of binding and showed the importance of enthalpic-entropic compensation in ligand binding to Tau-class GST enzymes.


Assuntos
Glutationa Transferase/metabolismo , Mangifera/enzimologia , Glutationa/metabolismo , Glutationa Transferase/química , Cinética , Ligação Proteica
17.
J Sci Food Agric ; 96(6): 2018-24, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26085036

RESUMO

BACKGROUND: Gaseous fumigants are commonly employed to control fungal decay of cold-stored grapes. So far it is not clear if these fumigants, besides the direct interaction against fungal structures, induce transcriptional responses of defensive markers. In order to contribute to understanding the mechanisms by which these fumigants exert their effect, we studied the influence of ozone (O3) and sulfur dioxide (SO2) on the decay caused by Botrytis cinerea, and the quality and expression of the defense-related genes chitinase, ß-1,3-glucanase and phenylalanine ammonia-lyase (PAL) in the table grape cultivars 'Redglobe' and 'Sugraone'. RESULTS: The application of SO2 or O3 delayed decay of both table grape cultivars caused by B. cinerea compared with the inoculated control. O3 treatments altered weight loss, firmness and shatter in both cultivars. Significant upregulation of chitinase and ß-1,3-glucanase were observed in SO2 -treated 'Redglobe' berries stored at 2 °C. O3 treatment transiently increased the expression of chitinase and PAL in 'Redglobe' and 'Sugraone' berries, respectively. CONCLUSION: Ozone and sulfur dioxide treatments can influence the expression patterns of PAL, chitinase and ß-1,3-glucanase to different extents in different grape cultivars and under different exposure conditions. The upregulation of these genes may be involved in the mechanism by which these fumigants inhibit the decay caused by pathogenic fungi.


Assuntos
Conservação de Alimentos/métodos , Frutas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ozônio/farmacologia , Dióxido de Enxofre/farmacologia , Vitis/efeitos dos fármacos , Frutas/genética , Frutas/metabolismo , Vitis/genética , Vitis/metabolismo
18.
Front Plant Sci ; 6: 62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25741352

RESUMO

Fruit ripening is a physiological and biochemical process genetically programmed to regulate fruit quality parameters like firmness, flavor, odor and color, as well as production of ethylene in climacteric fruit. In this study, a transcriptomic analysis of mango (Mangifera indica L.) mesocarp cv. "Kent" was done to identify key genes associated with fruit ripening. Using the Illumina sequencing platform, 67,682,269 clean reads were obtained and a transcriptome of 4.8 Gb. A total of 33,142 coding sequences were predicted and after functional annotation, 25,154 protein sequences were assigned with a product according to Swiss-Prot database and 32,560 according to non-redundant database. Differential expression analysis identified 2,306 genes with significant differences in expression between mature-green and ripe mango [1,178 up-regulated and 1,128 down-regulated (FDR ≤ 0.05)]. The expression of 10 genes evaluated by both qRT-PCR and RNA-seq data was highly correlated (R = 0.97), validating the differential expression data from RNA-seq alone. Gene Ontology enrichment analysis, showed significantly represented terms associated to fruit ripening like "cell wall," "carbohydrate catabolic process" and "starch and sucrose metabolic process" among others. Mango genes were assigned to 327 metabolic pathways according to Kyoto Encyclopedia of Genes and Genomes database, among them those involved in fruit ripening such as plant hormone signal transduction, starch and sucrose metabolism, galactose metabolism, terpenoid backbone, and carotenoid biosynthesis. This study provides a mango transcriptome that will be very helpful to identify genes for expression studies in early and late flowering mangos during fruit ripening.

19.
Front Plant Sci ; 6: 77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25755658

RESUMO

Fungi belonging to the genus Trichoderma, commonly found in soil or colonizing plant roots, exert beneficial effects on plants, including the promotion of growth and the induction of resistance to disease. T. virens and T. atroviride secrete the proteins Sm1 and Epl1, respectively, which elicit local and systemic disease resistance in plants. In this work, we show that these fungi promote growth in tomato (Solanum lycopersicum) plants. T. virens was more effective than T. atroviride in promoting biomass gain, and both fungi were capable of inducing systemic protection in tomato against Alternaria solani, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst DC3000). Deletion (KO) of epl1 in T. atroviride resulted in diminished systemic protection against A. solani and B. cinerea, whereas the T. virens sm1 KO strain was less effective in protecting tomato against Pst DC3000 and B. cinerea. Importantly, overexpression (OE) of epl1 and sm1 led to an increase in disease resistance against all tested pathogens. Although the Trichoderma WT strains induced both systemic acquired resistance (SAR)- and induced systemic resistance (ISR)-related genes in tomato, inoculation of plants with OE and KO strains revealed that Epl1 and Sm1 play a minor role in the induction of these genes. However, we found that Epl1 and Sm1 induce the expression of a peroxidase and an α-dioxygenase encoding genes, respectively, which could be important for tomato protection by Trichoderma spp. Altogether, these observations indicate that colonization by beneficial and/or infection by pathogenic microorganisms dictates many of the outcomes in plants, which are more complex than previously thought.

20.
3 Biotech ; 4(4): 357-365, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28324472

RESUMO

MADS-box genes are a large family of transcription factors initially discovered for their role during development of flowers and fruits. The MADS-box transcription factors from animals have been studied by X-ray protein crystallography but those from plants remain to be studied. In this work, a MADS-box cDNA from mango encoding a protein of 254 residues was obtained and compared. Based on phylogenetic analysis, it is proposed that the MADS-box transcription factor expressed in mango fruit (MiMADS1) belongs to the SEP clade of MADS-box proteins. MiMADS1 mRNA steady-state levels did not changed during mango fruit development and were up-regulated, when mango fruits reached physiological maturity as assessed by qRT-PCR. Thus, MiMADS1 could have a role during development and ripening of this fruit. The theoretical structural model of MiMADS1 showed the DNA-binding domain folding bound to a double-stranded DNA. Therefore, MiMADS1 is an interesting model for understanding DNA-binding for transcriptional regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...